a2 United States Patent

Kuesel et al.

US009239791B2

US 9,239,791 B2
*Jan. 19,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

S
W
z

232 —)236

CACHE SWIZZLE WITH INLINE
TRANSPOSITION

Applicant: International Business Machines

Corporation, Armonk, NY (US)
Inventors: Jamie R. Kuesel, Rochester, MN (US);
Mark G. Kupferschmidt, Bothell, WA
(US); Paul E. Schardt, Rochester, MN
(US); Robert A. Shearer, Woodinville,
WA (US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 164 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/800,669

Filed: Mar. 13,2013

Prior Publication Data

US 2014/0164704 A1 Jun. 12, 2014

Related U.S. Application Data

Continuation of application No. 13/712,094, filed on
Dec. 12, 2012.

Int. Cl1.

GO6F 12/08 (2006.01)

U.S. CL

CPC ... GO6F 12/0811 (2013.01); GO6F 12/0802

(2013.01)

Field of Classification Search
CPC GOG6F 12/0802; GO6F 12/0811; GO6F
12/0844; GO6F 12/0846; GOGF 12/0875;

234 j 238 j

GOG6F 12/0864; GOGF 12/0866; GOGF 12/0886;
GOG6F 17/30091; GOGF 17/3015; GO6F
17/30194; GOGF 3/061; GOG6F 3/0656; GO6F
8/63; GOGF 9/4406
711/112,113, 118, 122, E12.018,
711/E12.044, E12.045, E12.056
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,819,117 A * 10/1998 Hansen
5,852,738 A 12/1998 Bealkowski et al.

(Continued)

712/300

FOREIGN PATENT DOCUMENTS

GB 2385951 9/2003

OTHER PUBLICATIONS

Intel® Architecture Optimization Reference Manual, Intel Corpora-
tion, 1998, 1999.

(Continued)

Primary Examiner — Zhuo Li
(74) Attorney, Agent, or Firm — Middleton Reutlinger

(57) ABSTRACT

A method and circuit arrangement selectively swizzle data in
one or more levels of cache memory coupled to a processing
unit based upon one or more swizzle-related page attributes
stored in a memory address translation data structure such as
an Effective To Real Translation (ERAT) or Translation
Lookaside Buffer (TLB). A memory address translation data
structure may be accessed, for example, in connection with a
memory access request for data in a memory page, such that
attributes associated with the memory page in the data struc-
ture may be used to control whether data is swizzled, and if so,
how the data is to be formatted in association with handling
the memory access request.

11 Claims, 9 Drawing Sheets

230 _j

L
\%
L

Attributes

Access

Control ERAT

User

>

240) 242 D) 244 D)

246 J

US 9,239,791 B2
Page 2

(56)

6,816,165

7,190,284

7,712,098

7,805,587

7,822,993

7,859,541

7,898,551

8,135,962
2005/0155021
2006/0036650
2006/0047936
2006/0059553
2006/0095793
2006/0143350
2007/0245160
2007/0283125
2008/0016327
2008/0077922
2008/0148029
2008/0155273
2008/0240426
2009/0031142
2009/0055640
2009/0187734
2009/0216956
2009/0228682
2010/0107241
2010/0115250
2010/0250870
2010/0251260
2010/0306499
2010/0332786
2010/0332850

References Cited

U.S. PATENT DOCUMENTS

Bl* 11/2004

Bl
B2
Bl
B2
B2
B2
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

*

*

*

* %

*

3/2007
5/2010
9/2010
10/2010
12/2010
3/2011
3/2012
7/2005
2/2006
3/2006
3/2006
5/2006
6/2006
10/2007
12/2007
1/2008
3/2008
6/2008
6/2008
10/2008
1/2009
2/2009
7/2009
8/2009
9/2009
4/2010
5/2010
9/2010
9/2010
12/2010
12/2010
12/2010

Radke
Dye et al.
Chauvel et al.
Van Dyke et al.
Morais et al.
Montrym et al.
Xu et al.
Strongin et al.
DeWitt etal. 717/130
Ito et al.

Morais et al.

Morais et al.

Hall

Miloushev et al.

Benhase et al.

Manczak et al.

Menon et al.

Doring

Tucetal. ..cooverennn, 712/300
Conti 713/190
Gueron et al.

Halevi et al.

Dale et al.

Mejdrich et al.

Ekanadham et al. 711/137
Mejdrich et al. 712/7
Jaber et al.

Kriegel et al.

Vick et al.

May

Petolino, Jr.

Grohoski et al.

Boivie

345/567

............ 711/202

............. 345/530

2011/0087840 Al
2011/0107057 Al

4/2011
5/2011

Glasco et al.
Petolino, Ir.

2011/0131402 Al 6/2011 Mittal
2012/0042126 Al 2/2012 Krick et al.
OTHER PUBLICATIONS

U.S. Appl. No. 13/355,806 entitled, “Memory Address Translation-
Based Data Encryption/Compression” filed by Adam J. Muff on Jan.
23,2012.

U.S. Appl. No. 13/355,827 entitled, “Memory Address Translation-
Based Data Encryption with Integrated Encryption Engine” filed by
Adam J. Muff on Jan. 23, 2012.

David Champagne et al., “Scalable Architectural Support for Trusted
Software,” High Performance Computer Architecture (HPCA), 2010
IEEE 16th International Symposium on HPCA, Piscataway, NJ,
USA, Jan. 9, 2010, pp. 1-12.

International Search Report and Written Opinion of ISA dated May
23, 2013—International Application No. PCT/EP2013/050022.
U.S. Patent and Trademark Office, Office Action issued in related
U.S. Appl. No. 13/355,806, dated May 28, 2013.

U.S. Patent and Trademark Office, Final Office Action issued in
related U.S. Appl. No. 13/355,806, dated Oct. 2, 2013.

U.S. Patent and Trademark Office, Notice of Allowance issued in
related U.S. Appl. No. 13/355,806, dated Jan. 29, 2014.

U.S. Patent and Trademark Office, Office Action issued in related
U.S. Appl. No. 13/355,827, dated Nov. 14, 2013.

U.S. Patent and Trademark Office, Final Office Action issued in
related U.S. Appl. No. 13/355,827, dated Apr. 11, 2014.

U.S. Patent and Trademark Office, Notice of Allowance issued in
related U.S. Appl. No. 13/355,827, dated Sep. 30, 2014.

U.S. Patent and Trademark Office, Office Action issued in related
U.S. Appl. No. 13/712,094, dated Sep. 30, 2014.

* cited by examiner

U.S. Patent Jan. 19, 2016 Sheet 1 of 9 US 9,239,791 B2

-~ 10

¢ Display ,{}

k\ Device

il T S

NGO Video | 25 RAM .
Adapter | 20

] Application

N Bus Adapler

NOG ;
Coprocsssor 40
PO |

= Disk Dwive
Adapter

Connunications Adapter o Adapter

P \

L
Nebwork Cither Co

s T

L. Lisgr input
. Device
i b

FIG.

4

nputars

e

s rsssssssrt

Storogs

—1

U.S. Patent Jan. 19, 2016 Sheet 2 of 9 US 9,239,791 B2

» Most Computer 10

Port 130

HiP : i Blogk | . i Block
| g g 188 104 U it BT

Fower | 308 | Router | 108 | Router | 108 1 Router

1 . o 10 o 10« » 10 e
T ¥ P e

PRlock ! 77 1P Binok
108 104 o | 104

T
~
5
Fidl

Router | 108 | Rowtar | 108 | Router | 108 Router | 108
10 e 11e o 110 o 130 e

EN £ F

et
P

{IF Block 104

TN i P g E C‘ﬂ‘:ﬂ{ oo oo {:} ﬂ) {:: h ig

w5

Router | 108 | Router|{ 108 | 'Router| 108 { Router| 108
2g AR 118 8

i Block On-chip
104 Mamary 114

H
H

RARALS 1P Block
148 104

i Block ¢ 1P Blosk |
108 | |Router | 108
JE1 L FI— >

+ 108
- - i N - 3
Router | 108 | Router | 108

i x ¥

Nitwork On Chip (NOC) 102

[Port 126 |

)

L3

Peat 124

&

MMU 122 — Offchip Memary 112

FIG. 2

U.S. Patent

Jan. 19, 2016

Sheet 3 of 9

US

Processor e R&
134 138

L,

T

Vo 138

144’
-

Blamory
Conmurdoations

Controlier

DI Kermor
108 darriory

Corsnurgcations
Exacution Engine 1

8%

1

142

g

>

MNetwork Interface Controller 108

instruction

WVirtug! Chansl

N o] Corvarsion Impdamaniation
: i Logie 158 Logic 148
ki L

'E‘ES ™

Router 110

Wirtul
Channe!
Control

| Routing
Logic
152

Charmed

1

YWirlual

s 432

9,239,791 B2

102

108

i Block

138

SuHfer

| 1588 |

PSS

Routar

FIG.

iR Blook
104

Routsyr
118

3

108 | -

lon,

X

iF Blook

Wit

e

U.S. Patent Jan. 19, 2016 Sheet 4 of 9 US 9,239,791 B2

162 -

Fatch Branch
Sequencer |1t Fradiction
174 g

ke S

%

» ERAT 172

ICACHE |
170 |

| Depd . Sux Depd
P | ISBUE e P - fssue

X

T
Bt LR

194
AXT B’
194
&%2 m},:'

Fixed | .| Load 164 w F o

port | Bronoh | sicry | wo o FIG. 4
184 i< A T Iy 5
AXd
184

Sy

EN
*
#
4

104

dERAT 197
4
8

r HOACHE

XU 184 AXU 188

Motwork nfarface Conbroller 108

ERRSECRY

NGG 102

U.S. Patent Jan. 19, 2016 Sheet 5 of 9 US 9,239,791 B2

HERERE HHIRRERE inEREREE
AN iRiRRARd iAARAARA
““““

M

224

FIG. 5 999
\‘I EfN=l = =0

Processing Core Processing Core
T1 vo0o TN T1 000 TN
208 208 208 208
coC
ERAT| | L1 Cache ERAT|| L1 Cache

210 212 210 212

204) 204 _)

<

202 -)
206 j
r’ Memory management Unit L2 Cache
218
200 — —
TLB 214 Swizzle
220
FIG. 6 i
Memory
216
234 5238 j 230 W
\t/ Stride | Attributes User focese ERAT FIG.7

wiv |
z \Y
230 236 20) 202) 240 245

U.S. Patent Jan. 19, 2016 Sheet 6 of 9 US 9,239,791 B2

~) 260

Throw

Software J (- 250

Exception

\'/T/_\ T 252

Hypervisor
Protection AGEN

Exception
Handler

258 _D dERAT

dCache

\

256

253) 254 —> |

Load/Miss Swizzle
Queue Controller

A
262 —) 266)

A4

L2 Cache

264 D) FIG. 8

U.S. Patent Jan. 19, 2016 Sheet 7 of 9 US 9,239,791 B2

270
L‘[Load]
Access

272 '

274

Fulfill Request | No L1 Cache
from L1 Cache Miss?

276 Yes

A
FIG 9 k Route Request to

Load/Miss Queue

No

< Swizzled?

Yes 278

282

280 jv k Y

] Issue Bus Transaction
Data

286

284 _J

A
No
Swizzle? » Return Data

Yes

\

(

286

L Swizzle and
Return Data

-

290

Y
L Swizzle and Return Pref_etch
additional

Additional Cache Line(s) ache lines?

288

U.S. Patent Jan. 19, 2016 Sheet 8 of 9 US 9,239,791 B2

300
Cast Out
FIG. 10 ,
No
Swizzled?
Yes
308 & 302
304
Dy \;
. Issue Bus Transaction
Issue Bus Transaction with Swizzle Sideband
Data
308 | j 0
L/— Yes Invalidate
Ry 1 ’)
Invall@—> Cache Line
312 No
. Veg| Stream Write 316
. Data Through
SW'Z@) Swizzle J
Controller
No
314 v

Store Data <

U.S. Patent Jan. 19, 2016 Sheet 9 of 9 US 9,239,791 B2

Register File
322
320 |
L1 Cache(s)
326
336
L Swizzle ERAT(s)
Controller 332
340 |
L2 Cache
428 FIG. 11
338
L Swizzle TLB
Controller 334
342 |
L3 Cache
330
Main Memory
324
352
L Header A 350
352
\ Packet A
\
T Header B 350 356
Stride
Packet B 4'\ Swizzle Header A|Header B
[\Header C 350 —l/ Controller Header C|Header D
354
352 Packet C
[\HeaderD 350 FIG 12
352 Packet D

US 9,239,791 B2

1
CACHE SWIZZLE WITH INLINE
TRANSPOSITION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/712,094, filed on Dec. 12, 2012 by Jamie R.
Kuesel et al., the entire disclosure of which is incorporated by
reference herein.

FIELD OF THE INVENTION

The invention is generally related to data processing, and in
particular to processor architectures and the organization of
data therein.

BACKGROUND OF THE INVENTION

As semiconductor technology continues to inch closer to
practical limitations in terms of increases in clock speed,
architects are increasingly focusing on parallelism in proces-
sor architectures to obtain performance improvements. At the
chip level, multiple processor cores are often disposed on the
same chip, functioning in much the same manner as separate
processor chips, or to some extent, as completely separate
computers. In addition, even within cores, parallelism is
employed through the use of multiple execution units that are
specialized to handle certain types of operations. Pipelining is
also employed in many instances so that certain operations
that may take multiple clock cycles to perform are broken up
into stages, enabling other operations to be started prior to
completion of earlier operations. Multithreading is also
employed to enable multiple instruction streams to be pro-
cessed in parallel, enabling more overall work to performed in
any given clock cycle.

One area where parallelism continues to be exploited is in
the area of execution units, e.g., fixed point or floating point
execution units. Many floating point execution units, for
example, are deeply pipelined. However, while pipelining
can improve performance, pipelining is most efficient when
the instructions processed by a pipeline are not dependent on
one another, e.g., where a later instruction does not use the
result of an earlier instruction. Whenever an instruction oper-
ates on the result of another instruction, typically the later
instruction cannot enter the pipeline until the earlier instruc-
tion has exited the pipeline and calculated its result. The later
instruction is said to be dependent on the earlier instruction,
and phenomenon of stalling the later instruction waiting for
the result of an earlier instruction is said to introduce
“bubbles,” or cycles where no productive operations are being
performed, into the pipeline.

One technique that may be used to extract higher utilization
from a pipelined execution unit and remove unused bubbles is
to introduce multithreading. In this way, other threads are able
to issue instructions into the unused slots in the pipeline,
which drives the utilization and hence the aggregate through-
put up. Another popular technique for increasing perfor-
mance is to use a single instruction multiple data (SIMD)
architecture, which is also referred to as ‘vectorizing’ the
data. In this manner, operations are performed on multiple
data elements at the same time, and in response to the same
SIMD instruction. A vector execution unit typically includes
multiple processing lanes that handle different datapoints in a
vector and perform similar operations on all of the datapoints
at the same time. For example, for an architecture that relies

10

15

20

25

30

35

40

45

50

55

60

65

2

on quad (4) word vectors, a vector execution unit may include
four processing lanes that perform the identical operations on
the four words in each vector.

The aforementioned techniques may also be combined,
resulting in a multithreaded vector execution unit architecture
that enables multiple threads to issue SIMD instructions to a
vector execution unit to process “vectors” of data points at the
same time. Typically, a scheduling algorithm is utilized in
connection with issue logic to ensure that each thread is able
to proceed at a reasonable rate, with the number of bubbles in
the execution unit pipeline kept at a minimum.

Despite the significant performance capabilities of SIMD
execution units, it has been found that there is a substantial
amount of processing overhead consumed in arranging data
into a format that takes advantage of the multiple lane SIMD
execution units. This problem is aggravated, for example,
when data is stored in memory in an array of structures (AOS)
format and an execution unit processes data in a structure of
arrays (SOA) format. Furthermore, in many instances, one
process may require the data in one format, while another will
require the data to be in a different format, which often forces
data to be stored in memory in one format, with a processor
loading and re-ordering the data into the other format before
processing the data with an SIMD execution unit.

One conventional approach to this problem is to load all the
data, and then move it around in the vector register file. This
approach, however, typically wastes many instructions.
Another approach is to “swizzle,” or rearrange, the load data
right before entering it into the register file. While this
approach typically saves functional instructions, the
approach still typically requires every load to make multiple
accesses into a data cache.

As an example, many typical workloads that rely on SIMD
operations follow a simple loop where there is a vector load,
followed by a SIMD floating point operation such as a mul-
tiply add, and then followed by a vector store. In many con-
ventional processor architectures, this three instruction
sequence will be processed as a four cycle load, a single cycle
math operation, and a four cycle store, resulting in a loop that
is very cache bandwidth heavy and that does not take full
advantage of the processing capabilities of an SIMD execu-
tion unit.

Therefore, a significant need continues to exist in the art for
amanner of minimizing the performance overhead associated
with arranging data in a suitable format for execution in a data
processing system, particularly for execution using an SIMD
execution unit.

SUMMARY OF THE INVENTION

The invention addresses these and other problems associ-
ated with the prior art by providing a method and circuit
arrangement that selectively swizzle data in one or more
levels of cache memory coupled to a processing unit based
upon one or more swizzle-related page attributes stored in a
memory address translation data structure such as an Effec-
tive To Real Translation (ERAT) or Translation Lookaside
Buffer (TLB). A memory address translation data structure
may be accessed, for example, in connection with a memory
access request for data in a memory page, such that attributes
associated with the memory page in the data structure may be
used to control whether data is swizzled, and if so, how the
data is to be formatted in association with handling the
memory access request. As such, when the data is retrieved
from the cache memory for processing by a processing unit,
the data is formatted in a form that is optimized for efficient
processing of the data by the processing unit.

US 9,239,791 B2

3

Therefore, consistent with one aspect of the invention, data
is accessed in a data processing system by, in response to a
memory access request initiated by a processing unit in the
data processing system, accessing a memory address transla-
tion data structure to perform a memory address translation
for the memory access request; accessing at least one swizzle-
related page attribute in the memory address translation data
structure to determine whether data from the memory page
associated with the memory access request should be
swizzled; and causing data from the memory page to be stored
in a cache memory in a swizzled format based upon the at
least one swizzle-related page attribute.

These and other advantages and features, which character-
ize the invention, are set forth in the claims annexed hereto
and forming a further part hereof. However, for a better under-
standing of the invention, and of the advantages and objec-
tives attained through its use, reference should be made to the
Drawings, and to the accompanying descriptive matter, in
which there is described exemplary embodiments of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of exemplary automated com-
puting machinery including an exemplary computer useful in
data processing consistent with embodiments of the present
invention.

FIG. 2 is a block diagram of an exemplary NOC imple-
mented in the computer of FIG. 1.

FIG. 3 is a block diagram illustrating in greater detail an
exemplary implementation of a node from the NOC of FIG. 2.

FIG. 4 is a block diagram illustrating an exemplary imple-
mentation of an IP block from the NOC of FIG. 2.

FIG. 5 is a block diagram illustrating an example swizzle
operation consistent with the invention.

FIG. 6 is a block diagram of an exemplary data processing
system incorporating memory address translation-based
swizzling consistent with the invention.

FIG. 7 is a block diagram of an exemplary ERAT entry
format for the ERAT referenced in FIG. 6.

FIG. 8 is a block diagram illustrating an exemplary
memory access using a data processing system supporting
memory address translation-based swizzling consistent with
the invention.

FIG. 9 is a flowchart illustrating an exemplary sequence of
operations for performing a load access in the data processing
system of FIG. 8.

FIG. 10 is a flowchart illustrating an exemplary sequence
of operations for performing a cast out in the data processing
system of FIG. 8.

FIG. 11 is a block diagram illustrating an exemplary data
processing system including multiple levels of address trans-
lation-based swizzling consisting with the invention.

FIG. 12 is a block diagram illustrating swizzing of packet
headers using address translation-based swizzling consistent
with the invention.

DETAILED DESCRIPTION

Embodiments consistent with the invention selectively
swizzle data stored in one or more levels of cache memory
based upon swizzle-related page attributes stored in a
memory address translation data structure such as an Effec-
tive To Real Translation (ERAT) or Translation Lookaside
Buffer (TLB). A memory address translation data structure
may be accessed, for example, in connection with a memory
access request for data in a memory page, such that attributes

5

10

15

20

25

30

35

40

45

50

55

60

65

4

associated with the memory page in the data structure may be
used to control whether and how data is swizzled in associa-
tion with handling the memory access request. As such, when
data is retrieved into a cache, the swizzle-related page
attribute(s) may be used to control the selective swizzling of
the data prior to storing in the cache.

Swizzling, in this regard, refers to permutation, transposi-
tion or otherwise rearranging data into a different arrange-
ment. Typically, swizzling is performed in order to rearrange
data into a format that is more suitable for performing a
particular task with a processing unit. As will become more
apparent below, for example, swizzling may be used to rear-
range data to place it in a more suitable format for image or
graphics processing, for processing packet headers, or in any
of'a number of other applications where data is processed in
regular blocks or groups.

A swizzle-related page attribute may include, for example,
an indicator of whether or not data in a page should be
swizzled, at what level, or cache memory, data in a page
should be swizzled, whether the data should be written back
to higher level cache memories or invalidated when cast out,
a stride length or size to indicate how data should be repacked
in a cache memory, a size or amount of data to access at each
stride, or any other swizzle-related information useful in
selectively swizzling data in a cache memory.

Other variations and modifications will be apparent to one
of ordinary skill in the art. Therefore, the invention is not
limited to the specific implementations discussed herein.

Hardware and Software Environment

Now turning to the drawings, wherein like numbers denote
like parts throughout the several views, FIG. 1 illustrates
exemplary automated computing machinery including an
exemplary computer 10 useful in data processing consistent
with embodiments of the present invention. Computer 10 of
FIG. 1 includes at least one computer processor 12 or ‘CPU’
as well as random access memory 14 (‘RAM’), which is
connected through a high speed memory bus 16 and bus
adapter 18 to processor 12 and to other components of the
computer 10.

Stored in RAM 14 is an application program 20, a module
of user-level computer program instructions for carrying out
particular data processing tasks such as, for example, word
processing, spreadsheets, database operations, video gaming,
stock market simulations, atomic quantum process simula-
tions, or other user-level applications. Also stored in RAM 14
is an operating system 22. Operating systems useful in con-
nection with embodiments of the invention include UNIX™,
Linux™, Microsoft Windows XP™, AIX™ [BM’s i5/0S™,
and others as will occur to those of skill in the art. Operating
system 22 and application 20 in the example of FIG. 1 are
shown in RAM 14, but many components of such software
typically are stored in non-volatile memory also, e.g., on a
disk drive 24.

As will become more apparent below, embodiments con-
sistent with the invention may be implemented within Net-
work On Chip (NOC) integrated circuit devices, or chips, and
as such, computer 10 is illustrated including two exemplary
NOC:s: a video adapter 26 and a coprocessor 28. NOC video
adapter 26, which may alternatively be referred to as a graph-
ics adapter, is an example of an I/O adapter specially designed
for graphic output to a display device 30 such as a display
screen or computer monitor. NOC video adapter 26 is con-
nected to processor 12 through a high speed video bus 32, bus
adapter 18, and the front side bus 34, which is also a high
speed bus. NOC Coprocessor 28 is connected to processor 12

US 9,239,791 B2

5

through bus adapter 18, and front side buses 34 and 36, which
is also a high speed bus. The NOC coprocessor of FIG. 1 may
be optimized, for example, to accelerate particular data pro-
cessing tasks at the behest of the main processor 12.

The exemplary NOC video adapter 26 and NOC coproces-
sor 28 of FIG. 1 each include a NOC, including integrated
processor (‘IP’) blocks, routers, memory communications
controllers, and network interface controllers, the details of
which will be discussed in greater detail below in connection
with FIGS. 2-3. The NOC video adapter and NOC coproces-
sor are each optimized for programs that use parallel process-
ing and also require fast random access to shared memory. It
will be appreciated by one of ordinary skill in the art having
the benefit of the instant disclosure, however, that the inven-
tion may be implemented in devices and device architectures
other than NOC devices and device architectures. The inven-
tion is therefore not limited to implementation withinan NOC
device.

Computer 10 of FIG. 1 includes disk drive adapter 38
coupled through an expansion bus 40 and bus adapter 18 to
processor 12 and other components of the computer 10. Disk
drive adapter 38 connects non-volatile data storage to the
computer 10 in the form of disk drive 24, and may be imple-
mented, for example, using Integrated Drive Electronics
(‘IDE’) adapters, Small Computer System Interface (‘SCSI”)
adapters, and others as will occur to those of skill in the art.
Non-volatile computer memory also may be implemented for
as an optical disk drive, electrically erasable programmable
read-only memory (so-called ‘EEPROM’ or ‘Flash’
memory), RAM drives, and so on, as will occur to those of
skill in the art.

Computer 10 also includes one or more input/output (‘I/
0O’) adapters 42, which implement user-oriented input/output
through, for example, software drivers and computer hard-
ware for controlling output to display devices such as com-
puter display screens, as well as user input from user input
devices 44 such as keyboards and mice. In addition, computer
10 includes a communications adapter 46 for data communi-
cations with other computers 48 and for data communications
with a data communications network 50. Such data commu-
nications may be carried out serially through RS-232 connec-
tions, through external buses such as a Universal Serial Bus
(‘USB’), through data communications data communications
networks such as IP data communications networks, and in
other ways as will occur to those of skill in the art. Commu-
nications adapters implement the hardware level of data com-
munications through which one computer sends data commu-
nications to another computer, directly or through a data
communications network. Examples of communications
adapters suitable for use in computer 10 include modems for
wired dial-up communications, Ethernet (IEEE 802.3) adapt-
ers for wired data communications network communications,
and 802.11 adapters for wireless data communications net-
work communications.

For further explanation, FIG. 2 sets forth a functional block
diagram of an example NOC 102 according to embodiments
of the present invention. The NOC in FIG. 2 is implemented
on a ‘chip’ 100, that is, on an integrated circuit. NOC 102
includes integrated processor (‘IP”) blocks 104, routers 110,
memory communications controllers 106, and network inter-
face controllers 108 grouped into interconnected nodes. Each
1P block 104 is adapted to a router 110 through a memory
communications controller 106 and a network interface con-
troller 108. Each memory communications controller con-
trols communications between an IP block and memory, and
each network interface controller 108 controls inter-IP block
communications through routers 110.

10

15

20

25

30

35

40

45

50

55

60

65

6

In NOC 102, each IP block represents a reusable unit of
synchronous or asynchronous logic design used as a building
block for data processing within the NOC. The term ‘IP
block’ is sometimes expanded as ‘intellectual property
block,” effectively designating an IP block as a design that is
owned by a party, that is the intellectual property of a party, to
be licensed to other users or designers of semiconductor
circuits. In the scope of the present invention, however, there
is no requirement that IP blocks be subject to any particular
ownership, so the term is always expanded in this specifica-
tion as ‘integrated processor block.” IP blocks, as specified
here, are reusable units of logic, cell, or chip layout design
that may or may not be the subject of intellectual property. IP
blocks are logic cores that can be formed as ASIC chip
designs or FPGA logic designs.

One way to describe IP blocks by analogy is that IP blocks
are for NOC design what a library is for computer program-
ming or a discrete integrated circuit component is for printed
circuit board design. In NOCs consistent with embodiments
of the present invention, IP blocks may be implemented as
generic gate netlists, as complete special purpose or general
purpose microprocessors, or in other ways as may occur to
those of skill in the art. A netlist is a Boolean-algebra repre-
sentation (gates, standard cells) of an IP block’s logical-
function, analogous to an assembly-code listing for a high-
level program application. NOCs also may be implemented,
for example, in synthesizable form, described in a hardware
description language such as Verilog or VHDL. In addition to
netlist and synthesizable implementation, NOCs also may be
delivered in lower-level, physical descriptions. Analog IP
block elements such as SERDES, PLL, DAC, ADC, and so
on, may be distributed in a transistor-layout format such as
GDSII. Digital elements of IP blocks are sometimes offered
in layout format as well. It will also be appreciated that IP
blocks, as well as other logic circuitry implemented consis-
tent with the invention may be distributed in the form of
computer data files, e.g., logic definition program code, that
define at various levels of detail the functionality and/or lay-
out of the circuit arrangements implementing such logic.
Thus, while the invention has and hereinafter will be
described in the context of circuit arrangements implemented
in fully functioning integrated circuit devices, data process-
ing systems utilizing such devices, and other tangible, physi-
cal hardware circuits, those of ordinary skill in the art having
the benefit of the instant disclosure will appreciate that the
invention may also be implemented within a program prod-
uct, and that the invention applies equally regardless of the
particular type of computer readable storage medium being
used to distribute the program product. Examples of com-
puter readable storage media include, but are not limited to,
physical, recordable type media such as volatile and non-
volatile memory devices, floppy disks, hard disk drives, CD-
ROMs, and DVDs (among others).

Each IP block 104 in the example of FIG. 2 is adapted to a
router 110 through a memory communications controller
106. Each memory communication controller is an aggrega-
tion of synchronous and asynchronous logic circuitry adapted
to provide data communications between an IP block and
memory. Examples of such communications between IP
blocks and memory include memory load instructions and
memory store instructions. The memory communications
controllers 106 are described in more detail below with ref-
erence to FI1G. 3. Each IP block 104 is also adapted to a router
110 through a network interface controller 108, which con-
trols communications through routers 110 between IP blocks
104. Examples of communications between IP blocks include
messages carrying data and instructions for processing the

US 9,239,791 B2

7

data among IP blocks in parallel applications and in pipelined
applications. The network interface controllers 108 are also
described in more detail below with reference to FIG. 3.

Routers 110, and the corresponding links 118 therebe-
tween, implement the network operations of the NOC. The
links 118 may be packet structures implemented on physical,
parallel wire buses connecting all the routers. That is, each
link may be implemented on a wire bus wide enough to
accommodate simultaneously an entire data switching
packet, including all header information and payload data. If
a packet structure includes 64 bytes, for example, including
an eight byte header and 56 bytes of payload data, then the
wire bus subtending each link is 64 bytes wide, 512 wires. In
addition, each link may be bi-directional, so that if the link
packet structure includes 64 bytes, the wire bus actually con-
tains 1024 wires between each router and each of its neigh-
bors in the network. In such an implementation, a message
could include more than one packet, but each packet would fit
precisely onto the width of the wire bus. In the alternative, a
link may be implemented on a wire bus that is only wide
enough to accommodate a portion of a packet, such that a
packet would be broken up into multiple beats, e.g., so that if
alink is implemented as 16 bytes in width, or 128 wires, a 64
byte packet could be broken into four beats. It will be appre-
ciated that different implementations may used different bus
widths based on practical physical limits as well as desired
performance characteristics. If the connection between the
router and each section of wire bus is referred to as a port, then
each router includes five ports, one for each of four directions
of data transmission on the network and a fifth port for adapt-
ing the router to a particular IP block through a memory
communications controller and a network interface control-
ler.

Each memory communications controller 106 controls
communications between an IP block and memory. Memory
can include off-chip main RAM 112, memory 114 connected
directly to an IP block through a memory communications
controller 106, on-chip memory enabled as an IP block 116,
and on-chip caches. In NOC 102, either of the on-chip memo-
ries 114, 116, for example, may be implemented as on-chip
cache memory. All these forms of memory can be disposed in
the same address space, physical addresses or virtual
addresses, true even for the memory attached directly to an I[P
block. Memory addressed messages therefore can be entirely
bidirectional with respect to IP blocks, because such memory
can be addressed directly from any IP block anywhere on the
network. Memory 116 on an IP block can be addressed from
that IP block or from any other IP block in the NOC. Memory
114 attached directly to a memory communication controller
can be addressed by the IP block that is adapted to the network
by that memory communication controller—and can also be
addressed from any other IP block anywhere in the NOC.

NOC 102 includes two memory management units
(‘MMUSs’) 120, 122, illustrating two alternative memory
architectures for NOCs consistent with embodiments of the
present invention. MMU 120 is implemented within an IP
block, allowing a processor within the IP block to operate in
virtual memory while allowing the entire remaining architec-
ture of the NOC to operate in a physical memory address
space. MMU 122 is implemented off-chip, connected to the
NOC through a data communications port 124. The port 124
includes the pins and other interconnections required to con-
duct signals between the NOC and the MMU, as well as
sufficient intelligence to convert message packets from the
NOC packet format to the bus format required by the external
MMU 122. The external location of the MMU means that all
processors in all IP blocks of the NOC can operate in virtual

10

15

20

25

30

35

40

45

50

55

60

65

8

memory address space, with all conversions to physical
addresses of the off-chip memory handled by the off-chip
MMU 122.

In addition to the two memory architectures illustrated by
use of the MMUs 120, 122, data communications port 126
illustrates a third memory architecture useful in NOCs
capable of being utilized in embodiments of the present
invention. Port 126 provides a direct connection between an
IP block 104 of the NOC 102 and off-chip memory 112. With
no MMU in the processing path, this architecture provides
utilization of a physical address space by all the IP blocks of
the NOC. In sharing the address space bi-directionally, all the
IP blocks of the NOC can access memory in the address space
by memory-addressed messages, including loads and stores,
directed through the IP block connected directly to the port
126. The port 126 includes the pins and other interconnec-
tions required to conduct signals between the NOC and the
off-chip memory 112, as well as sufficient intelligence to
convert message packets from the NOC packet format to the
bus format required by the off-chip memory 112.

Inthe example of F1G. 2, one of the IP blocks is designated
a host interface processor 128. A host interface processor 128
provides an interface between the NOC and a host computer
10 in which the NOC may be installed and also provides data
processing services to the other IP blocks on the NOC, includ-
ing, for example, receiving and dispatching among the IP
blocks of the NOC data processing requests from the host
computer. A NOC may, for example, implement a video
graphics adapter 26 or a coprocessor 28 on a larger computer
10 as described above with reference to FIG. 1. In the example
of FIG. 2, the host interface processor 128 is connected to the
larger host computer through a data communications port
130. The port 130 includes the pins and other interconnec-
tions required to conduct signals between the NOC and the
host computer, as well as sufficient intelligence to convert
message packets from the NOC to the bus format required by
the host computer 10. In the example of the NOC coprocessor
in the computer of FIG. 1, such a port would provide data
communications format translation between the link structure
of'the NOC coprocessor 28 and the protocol required for the
front side bus 36 between the NOC coprocessor 28 and the
bus adapter 18.

FIG. 3 next illustrates a functional block diagram illustrat-
ing in greater detail the components implemented within an
IP block 104, memory communications controller 106, net-
work interface controller 108 and router 110 in NOC 102,
collectively illustrated at 132. IP block 104 includes a com-
puter processor 134 and I/O functionality 136. In this
example, computer memory is represented by a segment of
random access memory (‘RAM’) 138 in IP block 104. The
memory, as described above with reference to FIG. 2, can
occupy segments of a physical address space whose contents
on each IP block are addressable and accessible from any IP
block in the NOC. The processors 134, 1/O capabilities 136,
and memory 138 in each IP block effectively implement the
IP blocks as generally programmable microcomputers. As
explained above, however, in the scope of the present inven-
tion, IP blocks generally represent reusable units of synchro-
nous or asynchronous logic used as building blocks for data
processing within a NOC. Implementing IP blocks as gener-
ally programmable microcomputers, therefore, although a
common embodiment useful for purposes of explanation, is
not a limitation of the present invention.

In NOC 102 of FIG. 3, each memory communications
controller 106 includes a plurality of memory communica-
tions execution engines 140. Each memory communications
execution engine 140 is enabled to execute memory commu-

US 9,239,791 B2

9

nications instructions from an IP block 104, including bidi-
rectional memory communications instruction flow 141, 142,
144 between the network and the IP block 104. The memory
communications instructions executed by the memory com-
munications controller may originate, not only from the IP
block adapted to a router through a particular memory com-
munications controller, but also from any IP block 104 any-
where in NOC 102. That is, any IP block in the NOC can
generate a memory communications instruction and transmit
that memory communications instruction through the routers
of the NOC to another memory communications controller
associated with another IP block for execution of that
memory communications instruction. Such memory commu-
nications instructions can include, for example, translation
lookaside buffer control instructions, cache control instruc-
tions, barrier instructions, and memory load and store instruc-
tions.

Each memory communications execution engine 140 is
enabled to execute a complete memory communications
instruction separately and in parallel with other memory com-
munications execution engines. The memory communica-
tions execution engines implement a scalable memory trans-
action processor optimized for concurrent throughput of
memory communications instructions. Memory communica-
tions controller 106 supports multiple memory communica-
tions execution engines 140 all of which run concurrently for
simultaneous execution of multiple memory communications
instructions. A new memory communications instruction is
allocated by the memory communications controller 106 to a
memory communications engine 140 and memory commu-
nications execution engines 140 can accept multiple response
events simultaneously. In this example, all of the memory
communications execution engines 140 are identical. Scaling
the number of memory communications instructions that can
be handled simultaneously by a memory communications
controller 106, therefore, is implemented by scaling the num-
ber of memory communications execution engines 140.

In NOC 102 of FIG. 3, each network interface controller
108 is enabled to convert communications instructions from
command format to network packet format for transmission
among the IP blocks 104 through routers 110. The commu-
nications instructions may be formulated in command format
by the IP block 104 or by memory communications controller
106 and provided to the network interface controller 108 in
command format. The command format may be a native
format that conforms to architectural register files of IP block
104 and memory communications controller 106. The net-
work packet format is typically the format required for trans-
mission through routers 110 of the network. Each such mes-
sage is composed of one or more network packets. Examples
of such communications instructions that are converted from
command format to packet format in the network interface
controller include memory load instructions and memory
store instructions between IP blocks and memory. Such com-
munications instructions may also include communications
instructions that send messages among IP blocks carrying
data and instructions for processing the data among IP blocks
in parallel applications and in pipelined applications.

In NOC 102 of FIG. 3, each IP block is enabled to send
memory-address-based communications to and from
memory through the IP block’s memory communications
controller and then also through its network interface control-
ler to the network. A memory-address-based communica-
tions is a memory access instruction, such as a load instruc-
tion or a store instruction, that is executed by a memory
communication execution engine of a memory communica-
tions controller of an IP block. Such memory-address-based

20

25

30

40

45

10

communications typically originate in an IP block, formu-
lated in command format, and handed off to a memory com-
munications controller for execution.

Many memory-address-based communications are
executed with message traffic, because any memory to be
accessed may be located anywhere in the physical memory
address space, on-chip or off-chip, directly attached to any
memory communications controller in the NOC, or ulti-
mately accessed through any IP block of the NOC—regard-
less of which IP block originated any particular memory-
address-based communication. Thus, in NOC 102, all
memory-address-based communications that are executed
with message traffic are passed from the memory communi-
cations controller to an associated network interface control-
ler for conversion from command format to packet format and
transmission through the network in a message. In converting
to packet format, the network interface controller also iden-
tifies a network address for the packet in dependence upon the
memory address or addresses to be accessed by a memory-
address-based communication. Memory address based mes-
sages are addressed with memory addresses. Each memory
address is mapped by the network interface controllers to a
network address, typically the network location of a memory
communications controller responsible for some range of
physical memory addresses. The network location of a
memory communication controller 106 is naturally also the
network location of that memory communication controller’s
associated router 110, network interface controller 108, and
IP block 104. The instruction conversion logic 150 within
each network interface controller is capable of converting
memory addresses to network addresses for purposes of
transmitting ~ memory-address-based communications
through routers of a NOC.

Upon receiving message traffic from routers 110 of the
network, each network interface controller 108 inspects each
packet for memory instructions. Each packet containing a
memory instruction is handed to the memory communica-
tions controller 106 associated with the receiving network
interface controller, which executes the memory instruction
before sending the remaining payload of the packet to the IP
block for further processing. In this way, memory contents are
always prepared to support data processing by an IP block
before the IP block begins execution of instructions from a
message that depend upon particular memory content.

In NOC 102 of FIG. 3, each IP block 104 is enabled to
bypass its memory communications controller 106 and send
inter-IP block, network-addressed communications 146
directly to the network through the IP block’s network inter-
face controller 108. Network-addressed communications are
messages directed by a network address to another IP block.
Such messages transmit working data in pipelined applica-
tions, multiple data for single program processing among IP
blocks in a SIMD application, and so on, as will occurto those
of skill in the art. Such messages are distinct from memory-
address-based communications in that they are network
addressed from the start, by the originating IP block which
knows the network address to which the message is to be
directed through routers of the NOC. Such network-ad-
dressed communications are passed by the IP block through
1/0O functions 136 directly to the IP block’s network interface
controller in command format, then converted to packet for-
mat by the network interface controller and transmitted
through routers of the NOC to another IP block. Such net-
work-addressed communications 146 are bi-directional,
potentially proceeding to and from each IP block of the NOC,
depending on their use in any particular application. Each
network interface controller, however, is enabled to both send

US 9,239,791 B2

11

and receive such communications to and from an associated
router, and each network interface controller is enabled to
both send and receive such communications directly to and
from an associated IP block, bypassing an associated memory
communications controller 106.

Each network interface controller 108 in the example of
FIG. 3 is also enabled to implement virtual channels on the
network, characterizing network packets by type. Each net-
work interface controller 108 includes virtual channel imple-
mentation logic 148 that classifies each communication
instruction by type and records the type of instruction in a
field of the network packet format before handing off the
instruction in packet form to a router 110 for transmission on
the NOC. Examples of communication instruction types
include inter-IP block network-address-based messages,
request messages, responses to request messages, invalidate
messages directed to caches; memory load and store mes-
sages; and responses to memory load messages, etc.

Each router 110 in the example of FIG. 3 includes routing
logic 152, virtual channel control logic 154, and virtual chan-
nel buffers 156. The routing logic typically is implemented as
anetwork of synchronous and asynchronous logic that imple-
ments a data communications protocol stack for data com-
munication in the network formed by the routers 110, links
118, and bus wires among the routers. Routing logic 152
includes the functionality that readers of skill in the art might
associate in off-chip networks with routing tables, routing
tables in at least some embodiments being considered too
slow and cumbersome for use in a NOC. Routing logic imple-
mented as a network of synchronous and asynchronous logic
can be configured to make routing decisions as fast as a single
clock cycle. The routing logic in this example routes packets
by selecting a port for forwarding each packet received in a
router. Hach packet contains a network address to which the
packet is to be routed.

In describing memory-address-based communications
above, each memory address was described as mapped by
network interface controllers to a network address, a network
location of a memory communications controller. The net-
work location of a memory communication controller 106 is
naturally also the network location of that memory commu-
nication controller’s associated router 110, network interface
controller 108, and IP block 104. In inter-IP block, or net-
work-address-based communications, therefore, it is also
typical for application-level data processing to view network
addresses as the location of an IP block within the network
formed by the routers, links, and bus wires of the NOC. FIG.
2 illustrates that one organization of such a network is a mesh
of rows and columns in which each network address can be
implemented, for example, as either a unique identifier for
each set of associated router, IP block, memory communica-
tions controller, and network interface controller of the mesh
or X, y coordinates of each such set in the mesh.

In NOC 102 of FIG. 3, each router 110 implements two or
more virtual communications channels, where each virtual
communications channel is characterized by a communica-
tion type. Communication instruction types, and therefore
virtual channel types, include those mentioned above: inter-
IP block network-address-based messages, request mes-
sages, responses to request messages, invalidate messages
directed to caches; memory load and store messages; and
responses to memory load messages, and so on. In support of
virtual channels, each router 110 in the example of FIG. 3 also
includes virtual channel control logic 154 and virtual channel
buffers 156. The virtual channel control logic 154 examines
each received packet for its assigned communications type
and places each packet in an outgoing virtual channel buffer

5

10

15

20

25

30

35

40

45

50

55

60

65

12

for that communications type for transmission through a port
to a neighboring router on the NOC.

Each virtual channel buffer 156 has finite storage space.
When many packets are received in a short period of time, a
virtual channel buffer can fill up—so that no more packets can
be put in the buffer. In other protocols, packets arriving on a
virtual channel whose buffer is full would be dropped. Each
virtual channel buffer 156 in this example, however, is
enabled with control signals of the bus wires to advise sur-
rounding routers through the virtual channel control logic to
suspend transmission in a virtual channel, that is, suspend
transmission of packets of a particular communications type.
When one virtual channel is so suspended, all other virtual
channels are unaffected—and can continue to operate at full
capacity. The control signals are wired all the way back
through each router to each router’s associated network inter-
face controller 108. Each network interface controller is con-
figured to, upon receipt of such a signal, refuse to accept, from
its associated memory communications controller 106 or
from its associated IP block 104, communications instruc-
tions for the suspended virtual channel. In this way, suspen-
sion of a virtual channel affects all the hardware that imple-
ments the virtual channel, all the way back up to the
originating IP blocks.

One effect of suspending packet transmissions in a virtual
channel is that no packets are ever dropped. When a router
encounters a situation in which a packet might be dropped in
some unreliable protocol such as, for example, the Internet
Protocol, the routers in the example of FIG. 3 may suspend by
their virtual channel buffers 156 and their virtual channel
control logic 154 all transmissions of packets in a virtual
channel until buffer space is again available, eliminating any
need to drop packets. The NOC of FIG. 3, therefore, may
implement highly reliable network communications proto-
cols with an extremely thin layer of hardware.

The example NOC of FIG. 3 may also be configured to
maintain cache coherency between both on-chip and oft-chip
memory caches. Each NOC can support multiple caches each
of which operates against the same underlying memory
address space. For example, caches may be controlled by IP
blocks, by memory communications controllers, or by cache
controllers external to the NOC. Either of the on-chip memo-
ries 114, 116 in the example of FIG. 2 may also be imple-
mented as an on-chip cache, and, within the scope of the
present invention, cache memory can be implemented off-
chip also.

Each router 110 illustrated in FIG. 3 includes five ports,
four ports 158 A-D connected through bus wires 118 to other
routers and a fifth port 160 connecting each router to its
associated IP block 104 through a network interface control-
ler 108 and a memory communications controller 106. As can
be seen from the illustrations in FIGS. 2 and 3, the routers 110
and the links 118 of the NOC 102 form a mesh network with
vertical and horizontal links connecting vertical and horizon-
tal ports in each router. In the illustration of FIG. 3, for
example, ports 158A, 158C and 160 are termed vertical ports,
and ports 158B and 158D are termed horizontal ports.

FIG. 4 next illustrates in another manner one exemplary
implementation of an IP block 104 consistent with the inven-
tion, implemented as a processing element partitioned into an
issue or instruction unit (IU) 162, execution unit (XU) 164
and auxiliary execution unit (AXU) 166. In the illustrated
implementation, IU 162 includes a plurality of instruction
buffers 168 that receive instructions from an L1 instruction
cache (iCACHE) 170. Each instruction buffer 168 is dedi-
cated to one of a plurality, e.g., four, symmetric multithreaded
(SMT) hardware threads. An effective-to-real translation unit

US 9,239,791 B2

13

(1ERAT) 172 is coupled to iCACHE 170, and is used to
translate instruction fetch requests from a plurality of thread
fetch sequencers 174 into real addresses for retrieval of
instructions from lower order memory. Each thread fetch
sequencer 174 is dedicated to a particular hardware thread,
and is used to ensure that instructions to be executed by the
associated thread is fetched into the iCACHE for dispatch to
the appropriate execution unit. As also shown in FIG. 4,
instructions fetched into instruction buffer 168 may also be
monitored by branch prediction logic 176, which provides
hints to each thread fetch sequencer 174 to minimize instruc-
tion cache misses resulting from branches in executing
threads.

TU 162 also includes a dependency/issue logic block 178
dedicated to each hardware thread, and configured to resolve
dependencies and control the issue of instructions from
instruction buffer 168 to XU 164. In addition, in the illus-
trated embodiment, separate dependency/issue logic 180 is
provided in AXU 166, thus enabling separate instructions to
be concurrently issued by different threads to XU 164 and
AXU 166. In an alternative embodiment, logic 180 may be
disposed in IU 162, or may be omitted in its entirety, such that
logic 178 issues instructions to AXU 166.

XU 164 is implemented as a fixed point execution unit,
including a set of general purpose registers (GPR’s) 182
coupled to fixed point logic 184, branch logic 186 and load/
store logic 188. Load/store logic 188 is coupled to an .1 data
cache (dCACHE) 190, with effective to real translation pro-
vided by dERAT logic 192. XU 164 may be configured to
implement practically any instruction set, e.g., all or a portion
of'a32b or 64 b PowerPC instruction set.

AXU 166 operates as an auxiliary execution unit including
dedicated dependency/issue logic 180 along with one or more
execution blocks 194. AXU 166 may include any number of
execution blocks, and may implement practically any type of
execution unit, e.g., a floating point unit, or one or more
specialized execution units such as encryption/decryption
units, coprocessors, vector processing units, graphics pro-
cessing units, XML processing units, etc. In the illustrated
embodiment, AXU 166 includes a high speed auxiliary inter-
face to XU 164, e.g., to support direct moves between AXU
architected state and XU architected state.

Communication with IP block 104 may be managed in the
manner discussed above in connection with FIG. 2, via net-
work interface controller 108 coupled to NOC 102. Address-
based communication, e.g., to access .2 cache memory, may
be provided, along with message-based communication. For
example, each IP block 104 may include a dedicated in box
and/or out box in order to handle inter-node communications
between IP blocks.

Embodiments of the present invention may be imple-
mented within the hardware and software environment
described above in connection with FIGS. 1-4. However, it
will be appreciated by one of ordinary skill in the art having
the benefit of the instant disclosure that the invention may be
implemented in a multitude of different environments, and
that other modifications may be made to the aforementioned
hardware and software embodiment without departing from
the spirit and scope of the invention. As such, the invention is
not limited to the particular hardware and software environ-
ment disclosed herein.

Address Translation-Based Swizzling
Ina SIMD vector processing system there may a significant

amount of overhead consumed in arranging data into a format
that takes advantage of the multiple lanes in SIMD processing

30

35

40

45

50

55

14

units. This problem is aggravated when data is stored in
memory as an array of structures (AOS) and the processing
requires data in a structure of arrays (SOA) format. In many
cases, one process will want the data in one format, while
another will prefer a different format, such that the data is
stored in memory in one format and a processor is required to
load and re-order the data before taking advantage of the
SIMD vector unit.

Generally to address this problem, conventional designs
may load all of the data and then move it around in the vector
register file, which often wastes many instructions. Alterna-
tively, the data may be swizzled right before being loaded into
the register file. This latter approach typically saves func-
tional instructions, but will still require every load to make
multiple accesses into the data cache. Many workloads follow
a simple loop where there is a vector load, followed by an
SIMD floating point operation, followed by a vector store,
and this three instruction sequence will typically be imple-
mented as a four cycle load, a single cycle math operation, and
a four cycle store. This approach becomes very cache band-
width heavy and consequently does not take full advantage of
the SIMD vector unit.

Embodiments consistent with the invention, on the other
hand, utilize address translation data structures and logic to
swizzle the data between levels of a memory system to allow
storing swizzled data in one or more levels of cache memory
to reduce cache accesses and increase performance. In par-
ticular, a page table entry (PTE), or other suitable data struc-
ture that is primarily used to translate effective or virtual
addresses into real addresses in a memory architecture, may
be used to store one or more swizzle-related page attributes
that define whether or not the data stored in a specific page is
to be swizzled. The PTE may be disposed, for example, in an
Effective To Real Translation (ERAT) table, a Translation
Lookaside Buffer (TLB) or a page table. Swizzle-related page
attributes may also include other swizzle-related information
such as a stride length or size to indicate how data should be
repacked in a cache memory, the size of data to access at each
stride, whether data should be written back to higher level
cache memories or invalidated when cast out, and an indica-
tion of which level of cache memory the swizzle should occur,
among others. This page may be an entire page, or simply a
subpage as defined by the core architecture.

As shown in FIG. 5, for example, a cache line of data may
be stored in main memory in the format illustrated at 222,
whereas it may be desirable to store the data in one or more
levels of cache memory using the format illustrated at 224 to
facilitate processing, e.g., by a vector execution unit. Hard-
ware logic associated with address translation logic and/or
cache logic may be used to manage cache coherence on the
cache line as with any other cache line, with a page table entry
or other address translation data structure providing the hard-
ware logic with attributes defining how the data is organized
and how it should be accessed. Vector loads to this line may
then return properly organized data in a single access, so as
with the aforementioned simple loop example, the loop
would use three processor execution cycles instead of nine,
resulting in a significant speedup. Other byte or word
accesses to this line may also calculate the proper offset based
on a stride length and access size specified in the PTE.

In addition, while in some embodiments all data for swiz-
zling may be required to be aligned on a cache line basis, this
is not always desirable, so in some embodiments, it may be
desirable to include an ability to span cache lines and extend
stride lengths by supporting invalidates from higher level
caches that can determine which cache lines must be invali-
dated. This can be done by either accessing an address trans-

US 9,239,791 B2

15

lation data structure such as an ERAT for invalidates, or
storing swizzle-related attributes in directory tag tables,
which are already accessed for invalidates.

By supporting variable access and stride lengths other than
vectors of words, functions such as loading one or more initial
bytes of many communications packets and processing their
headers in parallel may be supported. This would be useful,
for example, for scalar integer processing of packets in addi-
tion to vector workloads.

In some embodiments, a mode bit, or instruction modifier
bit defined in an instruction, may be included that controls
whether only the requested cache line is returned upon a load
access, or if all touched cache lines are returned. This would
act as a prefetch function for cases where all elements of the
vectors are going to be loaded.

In addition, as noted above, a level attribute may be used to
specify within which, among several levels of cache memory,
datais to be swizzled. In one embodiment ofthe invention, for
example, data may be stored in an .2 and/or [.3 cache in a
standard memory format, and multiple processors may per-
form different work on the data as they pass ownership back
and forth. The data may be retained in the standard format in
the [.2 and/or L3 caches, while each processor loads and
swizzles the data differently into that processor’s own L1
cache to optimize the accesses to the data for each particular
processor.

In addition, in some embodiments, reordering data may
also allow for data storage in a cache for more power opti-
mized accesses. For example, swizzled data oftentimes may
be stored in a single bank as opposed to being spread across
multiple banks, which otherwise require more arrays to be
active and consuming power.

FIG. 6, for example, illustrates an exemplary data process-
ing system 200 suitable for implementing address translation-
based swizzling consistent with the invention. System 200 is
illustrated with a memory bus 202 coupling together a plu-
rality of processing cores 204 to a memory management unit
(MMU) 206. While only two processing cores 204 are illus-
trated in FIG. 6, it will be appreciated that any number of
processing cores may be utilized in different embodiments of
the invention.

Each processing core 204 is an SMT core including a
plurality (N) of hardware threads 208, along with an Effective
To Real Translation (ERAT) unit 210 and integrated [.1 cache
212. ERAT 210, as is understood in the art, serves as a cache
for memory address translation data, e.g., PTEs, and is typi-
cally associated with a lower level data structure, e.g., a
translation lookaside buffer (TLB) 214 disposed in or other-
wise accessible to MMU 206. TLB 214 may also serve as a
cache for a larger page table, which is typically stored in a
memory 216.

The memory system may include multiple levels of
memory and caches, and as such, data processing system 200
is illustrated including an [.2 cache 218 coupled to MMU 206
and shared by processing cores 204. It will be appreciated,
however, that various alternative memory architectures may
be utilized in other embodiments of the invention. For
example, additional levels of cache memory, e.g., L3 caches,
may be used, and memory 216 may be partitioned in some
embodiments, e.g., in Non-Uniform Memory Access
(NUMA)-based data processing systems. Furthermore, addi-
tional cache levels may be dedicated to particular processing
cores, e.g., so that each processing core includes a dedicated
L2 cache, which may be integrated into the processing core or
coupled between the processing core and the memory bus. In

10

20

30

40

45

16

some embodiments, an .2 or L3 cache may be coupled
directly to the memory bus, rather than via a dedicated inter-
face to an MMU.

In addition, it will be appreciated that the components
illustrated in FIG. 6 may be integrated onto the same inte-
grated circuit device, or chip, or may be disposed in multiple
such chips. In one embodiment, for example, each processing
core is implemented as an IP block in a NOC arrangement,
and bus 202, MMU 206 and 1.2 cache 218 are integrated onto
the same chip as the processing cores in a SOC arrangement.
In other embodiments, bus 202, MMU 206, L2 cache 218,
and/or memory 216 each may be integrated on the same chip
or in different chips from the processing cores, and in some
instances processing cores may be disposed on separate
chips.

Given the wide variety of known processor and memory
architectures with which the invention may be utilized, it will
therefore be appreciated that the invention is not limited to the
particular memory architecture illustrated herein.

To implement address translation-based swizzling consis-
tent with the invention, data processing system 200 includes
swizzle logic 220, e.g., disposed within L2 cache 218, and
usable to selectively swizzle cache lines stored at various
levels of a memory subsystem.

As noted above, address translation-based swizzling may
be implemented by adding one or more page attributes to a
memory address translation data structure, e.g., a page table
entry (PTE). FIG. 7, for example, illustrates an exemplary
PTE 230 capable of being maintained inan ERAT 210 or TL.B
214, and extended to include various page attributes 232-238
to support address translation-based swizzling. A swizzle
attribute 232, e.g., a one-bit flag, may be used to indicate
whether the data in the page should be swizzled. A level
attribute 234, which may be implemented using one or more
bits, may be used to specify at which level data should be
swizzled. In the illustrated embodiment of FIG. 6, for
example, level attribute 234 may be a 1-bit value that controls
whether data is swizzled only in the L1 caches or in both the
L1 and L2 caches.

In addition, in some embodiments it may be desirable to
optionally specify an invalidate attribute 236 that defines
whether data that is swizzled and is being cast out of a cache
should be written back to a lower level cache or simply
invalidated. Furthermore, in some embodiments it may be
desirable to include a stride attribute 238 that specifies a stride
length used to swizzle data.

PTE 230 also stores additional data, similar to conventional
PTEs. For example, additional page attributes 240 such as
attributes indicating whether a page is cacheable, guarded, or
read-only, whether memory coherence or write-through is
required, an endian mode bit, etc., may be included in a PTE,
as may one or more bits allocated to user mode data 242, e.g.,
for software coherency or control over cache locking options.
An access control page attribute 244 may be provided to
control what processes are permitted to access a page of
memory, e.g., by specifying a process identifier (PID) asso-
ciated with the process that is authorized to access the page, or
optionally a combination of match and/or mask data, or other
data suitable for specifying a set of processes that are autho-
rized to access a page of memory. For example, the access
control attribute may mask off one or more LSBs from a PID
so that any PID matching the MSBs in the access control
attribute will be permitted to access the corresponding
memory page. ERAT page attribute 246 stores the effective to
real translation data for the PTE, typically including the real
address corresponding the effective/virtual address that is

US 9,239,791 B2

17
used to access the PTE, as well as the effective/virtual
address, which is also used to index the ERAT via a CAM
function.

It will be appreciated that the format of PTE 230 may also
be used in TLB 214 and any other page table resident in the
memory architecture. Alternatively, the PTEs stored in dif-
ferent levels of the memory architecture may include other
data or omit some data based upon the needs of that particular
level of the memory architecture. Furthermore, it will be
appreciated that, while the embodiments discussed herein
utilize the terms ERAT and TLB to describe various hardware
logic that stores or caches memory address translation infor-
mation in a processor or processing core, such hardware logic
may be referred to by other nomenclature, so the invention is
not limited to use with ERATs and TLBs. In addition, other
PTE formats may be used and therefore the invention is not
limited to the particular PTE format illustrated in FIG. 7.

By storing swizzle-related attributes in a PTE, the deter-
mination of whether data in a page is to be swizzled in a
particular cache memory, may readily be determined in asso-
ciation with accessing that data. As is well known in the art, a
hypervisor or other supervisor-level software, e.g., running in
firmware, a kernel, a partition manager or an operating sys-
tem, is conventionally used to allocate memory pages to
particular processes and to handle access violations that
might otherwise occur if a process attempts to access a
memory page for which it is not authorized to access. Such
supervisor-level software, for example, may manage an over-
all page table for the data processing system, with dedicated
hardware in the data processing system used to cache PTEs
from a page table in TL.B 214 and ERATs 210. Embodiments
consistent with the invention are therefore able to leverage
existing supervisor-level access controls to set up on behalfof
various applications or processes, what pages of memory
allocated to those applications or processes will store
swizzled data, and if so, how and where that data is to be
swizzled.

FIG. 8 for example, illustrates an exemplary data process-
ing system 250, and in particular, an exemplary processing
core therein, for the purposes of illustrating an exemplary
memory access that utilizes address translation-based swiz-
zling consistent with the invention. Address generation logic
252, e.g., as provided in a load/store unit of a processing core,
may generate a memory access request to access data (e.g., a
cache line) from a particular page of memory, e.g., in
response to an instruction executed by a hardware thread (not
shown) executing in the processing core. The memory access
request is issued to both an ERAT 253 and an L1 cache 254 in
parallel, with the former performing an address translation
operation, along with determining whether the memory
access request is authorized for the PID with which the
requesting hardware thread is associated, and with the latter
determining whether the cache line specified by the memory
access request is currently cached in the L1 cache. In the
illustrated embodiment of FIG. 8, ERAT 253 is designated a
“dERAT” and L1 cache 254 is designated a “dCache” to
indicate that these components are associated with data
accesses, and that corresponding iERAT and iCache compo-
nents may be provided to handle instruction accesses (not
shown).

ERAT 253, in response to the memory access request,
accesses a PTE 256 for the page of memory specified by the
memory access request. Hypervisor protection exception
handler logic 258 compares a PID for the memory access
request with the access control bits in the PTE, and if an
access violation occurs as a result of the PID not being autho-
rized to access this page of memory, logic 258 signals an

10

15

20

25

30

35

40

45

50

55

60

65

18

interrupt by throwing a software exception to the supervisor-
level software, as represented at 260. In the event that a
memory access request is authorized but a miss occurs on the
L1 cache, the memory access request is forwarded to a load/
miss queue 262, which issues the request to a lower level of
memory, e.g., an L2 cache 264.

Furthermore, as illustrated in FIG. 8, L2 cache 264 is
coupled to a swizzle controller 266, which also utilizes the
data in PTE 256 to determine whether to swizzle the cache
line in .1 and/or L2 caches 254, 264. In the event that the
cache line is to be swizzled, swizzle controller 266 controls
multiplexing logic 268 to output a swizzled representation of
the cache line returned by L2 cache 264, such that the
swizzled cache line is stored in LL1 cache 254. If not, swizzle
controller 266 controls multiplexing logic 268 to feed the
cache line from L2 cache 264 to L.1 cache 254 in an unaltered
form. Swizzle controller 266 may be disposed in or otherwise
coupled to various components in data processing system
250, e.g., within the [.2 cache 264. It may be desirable in
many embodiments, for example, to locate a swizzle control-
ler in the lowest level of memory that is expected to store
cache lines in an unswizzled format so that the swizzle con-
troller may swizzle the data in connection with fulfilling a
cache line request from a higher level cache.

FIG. 9 illustrates in greater detail a sequence of operations
270 that may be performed in response to a memory access
requests issued by a hardware thread on behalf of a process in
data processing system 250 to load data from a cache line. In
order to simplify this discussion, it is assumed that protection
logic has already determined that the requesting thread has
the right to access the page associated with the memory
access request, so access control-related steps are not illus-
trated in FIG. 9. Thus, if a thread is accessed to load data from
aparticular cache line, a determination is made as to whether
the request can be fulfilled by L1 cache 254 (block 272). Ifthe
memory access request does not miss on L1 cache 254, the
request is fulfilled by [.1 cache 254 (block 274), and handling
of the memory access request is complete.

However, if the request misses on L1 cache 254, the request
is routed to load/miss queue 262 in block 276 to add an entry
in the queue corresponding to the request. In addition, it may
be desirable to set one or more attributes in the entry to
correspond to the swizzle-related attributes stored in the PTE
for the cache line. Next, prior to issuing the request to a lower
level memory, e.g., over a memory bus to either an [.2 cache
oralower level memory, a determination is made in block 278
as to whether the page is indicated to be swizzled, as deter-
mined from the page attributes in PTE 256. If not, a bus
transaction is issued for the memory access request in block
280. On the other hand, if the page is to be swizzled, a bus
transaction is issued in block 286 with additional swizzle-
related sideband data from PTE 256.

The swizzle-related sideband data may be communicated
over a memory bus in a number of manners consistent with
the invention. For example, additional control lines may be
provided in a bus architecture to specify whether a bus trans-
action is associated with swizzled data so that a determination
of whether data is to be swizzled may be determined based
upon the state of one or more control lines. Alternatively,
transaction types may be associated with swizzled data so that
a determination may be made simply based upon the trans-
action type of the bus transaction. In still other embodiments,
no swizzle-related sideband data may be provided, and the
swizzle-related attributes may be retained in PTEs inmultiple
levels of memory.

Next, in block 284, the bus transaction is received by the .2
cache 264, and in particular by the swizzle controller 266

US 9,239,791 B2

19

therein, which determines whether the data is to be swizzled
in the L1 cache, e.g., based upon the sideband data provided
with the bus transaction or from a copy of a PTE in a TLB
associated with the 1.2 cache. If not, control passes to block
286 to return the requested cache line, either directly from the
L2 cache, or, if not presently cached in the L2 cache, from the
main memory.

Otherwise, if the cache line is to be swizzled, block 284
passes control to block 286 to swizzle the data prior to return-
ing the data to the [.1 cache. The manner in which the data is
swizzled is typically based on a hard-coded algorithm, or
alternatively, a customizable algorithm based on stride length
and/or data size specified via swizzle-related page attributes.
In addition, as illustrated in block 288 if the stride length
and/or data size cross cache lines and if a mode bit or other
control information indicate that more than one cache line
should be retrieved, control may pass to block 290 to swizzle
and return one or more additional cache lines in response to
the request.

FIG. 10 next illustrates a cast out routine 300 that may be
executed, for example, whenever modified data in the L1
cache is being cast out to the L2 cache or a lower level of
memory. Based upon whether the PTE indicates that the data
is swizzled (block 302), a bus transaction is issued without
(block 304) or with (block 306) swizzle sideband data. The L2
cache receives the bus transaction in block 308 and deter-
mines whether any swizzle-related attributes indicate that the
data is to be invalidated rather than written back to the L2
cache. It may be desirable to invalidate, for example, if the
data does not need to be written back to lower level memory,
e.g., if the data is read-only data.

If the data is to be invalidated, control passes to block 310
to simply invalidate the cache line in the .2 cache. Otherwise,
control passes to block 312 to determine whether the data is
swizzled. If not, control passes to block 314 to store the data
unchanged in the 1.2 cache. If the data is swizzled, control
instead passes to block 316 to stream the data through the
swizzle controller to deswizzle the data, prior to storing the
data in the L2 cache.

Swizzle control logic may be disposed at different levels of
a memory subsystem consistent with the invention. For
example, FIG. 11 illustrates a data processing system 320
including a register file 322 coupled to a main memory 324
through three levels of cache: L1 cache 326, 1.2 cache 328 and
L3 cache 330. Address translation data structures, e.g., ERAT
332 and TLB 334, may be disposed at various levels of the
memory subsystem, and swizzle logic, taking the form of a
swizzle controller 336, 338, may be disposed at various levels
of'the memory subsystem as well. In some embodiments, the
swizzle logic may be integrated into a cache controller, e.g.,
L2 or L3 cache controllers 340, 342.

In other embodiments, however, swizzle logic may be
separate from any cache controller, and may be disposed
within or outside of a processor or processing core. In general,
implementation of swizzle logic to implement the herein-
described functionality is well within the abilities of one of
ordinary skill in the art having the benefit of the instant
disclosure.

It will be appreciated that the herein-described embodi-
ments may be useful in a number of applications. For
example, as illustrated in FIG. 12, it may be desirable in a
network-processing application to process multiple packets
350 in parallel by swizzling together the first byte, or the first
few bytes, of the headers 352 of multiple packets 350 using a
swizzle controller 354 such that the headers, or portions
thereof, of multiple packets are packed into the same cache
lines. The resulting swizzled data, as illustrated at 356,

20

25

30

40

45

20

includes only the desired bytes of the headers 352 of multiple
packets 350, such that, for example, preprocessing of mul-
tiple packets may be performed in parallel using a vector
processing unit. As noted above, the flexibility of the herein-
described embodiments would permit a stride length that was
equal to the packet size, but not necessarily aligned with the
cache line organization, such that swizzling of multiple pack-
ets may additionally result in the prefetching of one or more
additional cache lines in association with a load request for a
swizzled cache line.

Therefore, embodiments consistent with the invention may
be used to facilitate swizzling of data to optimize processing
of retrieved data, particularly in association with vectorized
processing units, and with reduced latencies associated with
retrieving swizzled data. Various additional modifications
may be made to the disclosed embodiments without departing
from the spirit and scope of the invention. Therefore, the
invention lies in the claims hereinafter appended.

What is claimed is:

1. A circuit arrangement, comprising:

a cache memory;

a memory address translation data structure for use in
performing a memory address translation for a memory
access request initiated by a processing unit in commu-
nication with the cache memory, the memory address
translation data structure including translation data that
translates between a real memory address and an effec-
tive or virtual memory address for a memory page asso-
ciated with the memory access request and at least one
swizzle-related page attribute that indicates on a page
basis whether data in the memory page associated with
the memory access request should be swizzled; and

control logic configured to cause data from the memory
page to be stored in the cache memory in a swizzled
format based upon the at least one swizzle-related page
attribute in the memory address translation data struc-
ture, wherein at least a portion of the control logic is
coupled intermediate the cache memory and a lower
memory, and wherein the control logic is configured to
cause the data to be stored in the cache memory in the
swizzled format by swizzling the data to generate
swizzled data and storing the swizzled data in the cache
memory.

2. The circuit arrangement of claim 1, wherein the memory
address translation data structure includes a plurality of page
table entries, each page table entry including a real address
associated with the memory page associated with the page
table entry and the swizzle-related page attribute associated
with such memory page.

3. The circuit arrangement of claim 1, wherein the at least
one swizzle-related page attribute includes a level attribute,
and wherein the control logic is configured to selectively
swizzle the data if the level attribute indicates that the data is
to be swizzled in the level associated with the cache memory.

4. The circuit arrangement of claim 3, wherein the cache
memory is an L1 cache, wherein the data processing system
includes an L2 cache, and wherein the data is swizzled in the
L1 cache but not in the L.2 cache based on the level attribute.

5. The circuit arrangement of claim 1, wherein the at least
one swizzle-related page attribute includes a stride length
attribute, and wherein the control logic is configured to
swizzle the data using a stride length associated with the
stride length attribute.

6. The circuit arrangement of claim 1, wherein the at least
one swizzle-related page attribute includes an invalidate
attribute, and wherein the control logic is further configured

US 9,239,791 B2

21

to invalidate a cache line associated with the data in response
to a cast out of the cache line based on the invalidate attribute.

7. The circuit arrangement of claim 1, wherein the data is
associated with a cache line, and wherein the control logic is
further configured to prefetch at least one additional cache
line based on the at least one swizzle-related attribute.

8. The circuit arrangement of claim 7, wherein the control
logic is configured to prefetch the at least one additional cache
line based on at least one of a stride length attribute and a data
size attribute.

9. The circuit arrangement of claim 1, wherein the data is
associated with a cache line, wherein the memory page
includes a plurality of packets, each packet including a
header, and wherein the control logic is configured to selec-
tively swizzle the data by packing at least a portion of the
headers of multiple packets into the same cache line.

10. An integrated circuit device comprising the circuit
arrangement of claim 1.

11. A program product comprising a non-transitory com-
puter readable medium and logic definition program code
stored on the non-transitory computer readable medium and
defining the circuit arrangement of claim 1.

#* #* #* #* #*

10

15

20

22

